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Abstract

The problem of buckling of a rectangular plate subjected to uniformly distributed in-plane compressive loading at

each end goes back to the work of Bryan in 1890–91. The same problem, for the case of linearly varying in-plane

compressive loading at each end, was first treated by several European investigators about 90 years ago. The case of

loading that is nonlinearly distributed along two opposite plate edges is considerably more complicated in that it re-

quires that first the plane elasticity problem be solved to obtain the distribution of in-plane stresses. Then the buckling

problem must be solved. This problem was claimed to have been solved by van der Neut in 1958 for a half-sine load

distribution and later by Benoy for a parabolic distribution. However, their work was based on an incorrect in-plane

stress distribution. Here is presented a solution for the half-sine load distribution on two opposite sides, based on a

more realistic in-plane stress distribution. This distribution shows a decrease (diffusion) in axial stress as the distance

from the loaded edges is increased. The buckling loads are calculated using Galerkin method and the results are

compared with the inaccurate results in the literature.

� 2003 Elsevier Science Ltd. All rights reserved.
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1. Introduction

The problem of buckling of a rectangular elastic plate subjected to in-plane compressive or shear loading

is important in the shipbuilding, aircraft, and automotive industries. The first work in this area was due to
Bryan (1890–91) (see Timoshenko and Gere, 1961, p. 351). Bryan considered the case of uniformly dis-

tributed compressive loading and all four edges simply supported. The cases of more complicated boundary

conditions have been solved by innumerable investigators through the years.

The case of linearly varying edge loading was first considered independently in 1910 by Timoshenko and

in 1914 by Boobnov, using approximate methods (see Timoshenko and Gere, 1961, p. 373). This load-

ing case was also analyzed, using approximate methods, by Way (1936), Favre (1948), Grossman (1949),
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Noel (1952), McKenzie (1964), and Dawe (1969). Recently, Leissa and Kang (2001) and Kang and Leissa

(2001) solved this same problem exactly in a series sense.

There have been very few previous solutions for the case of nonlinearly distributed edge loadings.

Perhaps this scarcity is due to the additional complexity of having to first solve for the internal prestress
distribution as a problem in plane-stress elasticity. The first work in this area was due to van der Neut

(1958), who considered a uniaxial compressive loading with a half sine distribution. The work of Benoy

(1969) should also be mentioned. He considered a uniaxial compressive loading with a parabolic distri-

bution and obtained an energy solution.

It should be pointed out that the works of van der Neut (1958) and Benoy (1969) both suffered from

these serious deficiencies:

• The x-direction in-plane normal stress distribution was tacitly assumed to depend only on the y-position
coordinate. (In actuality there is a stress-diffusion phenomenon which causes this stress distribution to

vary with x as well as y.)
• The contributions of the y-direction in-plane normal stress distribution and the in-plane shear stress dis-

tribution have been ignored.

• It was assumed that the buckled waveform and thus the bending strain energy for the nonuniform-load-

ing case is identical to that for uniform loading.

The goal of the present work is to remove these deficiencies and thus to achieve more accurate results for
the buckling load.
2. Preliminary considerations

The problem geometry and coordinate system are shown in Fig. 1. The first approach investigated here

was to use the polynomial form of the Airy stress function, systematized by Niedenfuhr (1957) and Neou
(1957). The resulting distributions of in-plane stresses satisfied compatibility, vanishing shear stresses on all

four edges, and the parabolically distributed loading on the edges at x ¼ �a=2. Unfortunately, it was not

possible to satisfy the conditions of vanishing normal stresses on the edges y ¼ �b=2. However, it was

possible to have the resultant force
Fy ¼
Z a=2

�a=2
hry dx
vanish at y ¼ �b=2. Here h is the plate thickness. Nevertheless, the maximum value of ry at y ¼ �b=2 was

ð�2=3Þða=bÞ2r0, where r0 is the maximum value of the parabolically distributed rx at x ¼ �a=2. It is clear
that the maximum value of ry is not negligible relative to the maximum value of rx except for very short

(low aspect ratio) plates.
Fig. 1. Geometry and loading of the plate.
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In view of the inaccuracy of the Niedenfuhr–Neou prebuckling results, it was decided to use a direct

Fourier series approach using the superposition method (see Timoshenko and Goodier, 1970; Gorman and

Singhal, 1993).
3. In-plane stress solution

3.1. Theory

As shown in Fig. 1 a rectangular plate with the coordinate system placed at the center of the plate is

loaded with the in-plane loading as
Fig. 2.

functio
rx ¼ r0 cosðpy=bÞ ð1Þ

applied at the edges x ¼ �a=2. Substituting the Airy stress function /1 given by
/1 ¼ f ðxÞ cosðpy=bÞ ð2Þ

into the governing differential equationr4/ ¼ 0, one can obtain the general solution for the functional f ðxÞ
as
f ðxÞ ¼ C1 cosh
px
b

� �
þ C2 sinh

px
b

� �
þ C3 x cosh

px
b

� �
þ C4 x sinh

px
b

� �
ð3Þ
in which C1 through C4 are constants which are to be obtained from the boundary conditions. It is to be
noted that the stress function solution as given by Eqs. (2) and (3) gives a zero normal stress at y ¼ �b=2
edges.

Substituting the zero shear stress boundary condition as well as the normal stress distribution as defined

in Eq. (1), at the edges x ¼ �a=2, yields a complete solution for the in-plane stresses. (See Appendix A for

the complete solution.)
/1 ¼ C1 cosh
px
b

� ��
þ C4 x sinh

px
b

� ��
cos

py
b

� �
ð4Þ
However, the above in-plane stress solution gives a residual shear stress distribution at the y ¼ �b=2 edges

which can be eliminated using a superposed Fourier solution as discussed by Timoshenko and Goodier

(1970) and by Gorman and Singhal (1993). In the present problem, a solution consisting of two superposed

stress functions is sufficient to satisfy the required boundary conditions accurately.
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The stress function solution in Eq. (4) produces a shear stress distribution in the x-direction which can be

easily expanded as a Fourier sine series. In order to eliminate these shear stresses, one can start with a

second stress function solution, which produces sinusoidal shear stress distribution in the x-direction. After

eliminating the unsymmetric components, this stress function is given by
/2 ¼
X

m¼1;2;...

D1m cosh
2mpy
a

� ��
þ D4my sinh

2mpy
a

� ��
cos

2mpx
a

� �
ð5Þ
Imposing the zero normal stress boundary condition at the y ¼ �b=2 edges, an interrelation between D1m

and D4m can be obtained. Now superposition of the shear stress distribution at the y ¼ �b=2 edges and

equating the resultant to zero yields a complete solution.

It is to be observed that whereas the initial stress-function solution (/1) is a one-term solution, the

second stress-function solution (/2) is a series solution. However, at the most the first three or four series
terms are sufficient to obtain a close approximation for the residual shear stress distribution due to /1.

Although the stress-function solution /2 has zero normal stresses at the y ¼ �b=2 edges and zero shear

stresses at x ¼ �a=2 edges, it does produce a residual normal stress (rx). However, it is observed that this rx

stress distribution is once again sinusoidal with a very small magnitude. Consequently, a renormalization of

the superposed rx distribution has to be carried out such that the resulting rx stresses are very nearly as

specified by Eq. (1). This renormalization is carried out using a small uniform stress and a multiplication

factor. This methodology gives good results as shown in the next section.

In using the two-stress-function solution, however, one can observe that it deviates from the super-
position method as developed by Timoshenko and used extensively by Gorman. For the present problem,

the superposition method requires a four stress function solution wherein each stress function has to have

enough terms to obtain satisfactory convergence. From a preliminary analysis, it is concluded that the

superposition method showed a slow convergence for ry residual stress removal (at the y ¼ �b=2 edges).

Moreover the resulting in-plane stress distribution is considerably complicated and the in-plane stress

boundary conditions are approximately satisfied. Therefore in the present analysis, the two-stress-function

approach is carried out.
3.2. Numerical results for in-plane stress distribution

Fig. 2 shows the comparative shear stresses at y ¼ �b=2 plate edges for the case of /1 stress function

solution only and the superposed (/1 þ /2) stress function solution. From this figure, one can clearly see

that the superposed solution satisfied the zero shear stress boundary condition (on all four edges) very

accurately.

The direct Fourier solution (two-stress-function solution) in the present analysis shows a rapid reduction

(or diffusion) of rx––in-plane stresses towards the center of the plate. This decrease is more pronounced at

higher plate aspect ratios (Figs. 3 and 4). Such diffusion of in-plane stresses was ignored in the work of van

der Neut (1958) and Benoy (1969). In the absence of such diffusion, the applicability of those solutions is
very much restricted to small plate aspect ratios. (More will be discussed in Section 4.2 when the buckling

solution is presented.)

Fig. 3 shows the normal (rx) stress distribution across the plate width at various plate sections and in

Fig. 4 the in-plane normal stress at 2y=b ¼ 0, and shear stress at 2y=b ¼ 0:5, are plotted along the plate half

length. These figures show the normal stress diffusion from the edges of the plate towards the center of the

plate. At higher aspect ratios, the nonlinearity of the in-plane stress (rx) is significant only at a distance up

to the first quarter from the plate edge approximately and thereafter the in-plane stress essentially remains

uniform (see 2x=a ¼ 0 and 2x=a ¼ 0:5 curves in Fig. 3). Also Fig. 4 shows that the maximum shear stress
moves toward the plate edge as the aspect ratio is increased. Consequently the effect of in-plane shear stress
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on buckling at high plate aspect ratios reduces. One can notice from Fig. 4 that for lower plate aspect ratios,

the stress diffusion rate is small compared to those plates of high aspect ratios.

In order to see the normal stress diffusion more clearly, a three dimensional plot of the dimensionless

normal stress (compressive) is shown in Fig. 5 for a plate aspect ratio of 3. In this plot, the z-coordinate is
the normal stress magnitude corresponding to the ðx; yÞ location of the plate. From this figure one can see
the rapid normal stress diffusion from 2x=a ¼ �1 edges towards the center of the plate.

Fig. 6 shows the resultant shear stress variation across plate width at various plate sections. The maxi-

mum magnitude of shear stress increases from the middle of the plate towards the plate edges and then

reduces to zero at the plate edges (see Fig. 4 also). From the equilibrium perspective, this rapid increase in

shear stress corresponds to the normal stress diffusion.

The in-plane stress solution in the present analysis show that:

• In general all the in-plane stresses are functions of both x and y.
• The in-plane normal stress in the x-direction changes from a half sinusoidal distribution at the plate

edges to uniform (approximately) towards the plate center. This stress diffusion is more prominent at

high plate aspect ratios.



Fig. 5. Dimensionless normal stress (rx=r0) versus position in the midplane of the plate (aspect ratio¼ 3).
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• The normal stress in the y-direction and the shear stress distributions are significant and are highly non-

linear.
4. Buckling solution

4.1. Theory

The governing differential equation for thin plate buckling is
r4wþ h
D

rx
o2w
ox2

�
þ 2sxy

o2w
oxoy

þ ry
o2w
oy2

�
¼ 0 ð6Þ
where D is the flexural rigidity, h is the plate thickness, and w is the normal deflection.
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Owing to the complexity of the resulting plate buckling equation when each of the in-plane stress is a

series sum, exact analytical solution may not be possible. Therefore, the buckling solution is obtained by

using the Galerkin method for the case of simply supported rectangular plates. For the present case of

simply supported rectangular plates with central coordinate system the trial functions are
Table

Buckli

a

0.5

1

3

aHe
wðx; yÞ ¼ w0 cosðmpx=aÞ cosðnpy=bÞ; fm; n ¼ 1; 3; 5; . . .g

Numerical calculations were conducted using symbolic math package Mathematica (version 4.0).

4.2. Numerical results for buckling

Numerical computations are done using the first four trial functions. Numerical results are compared for

convergence between three-term Galerkin solution and four-term solution. Up to three significant digit
accuracy was obtained for all buckling loads with the four-term solution. Some representative results for

dimensionless buckling loads are presented in Table 1 and the dimensionless buckling coefficient for various

plate aspect ratios is plotted in Fig. 7. Although the results obtained by Benoy (1969) are for the case of

parabolic loading, one can compare the solutions due to the close similarity of sinusoidal and parabolic

stress distributions.

The buckling loads in the present analysis are higher than those of Benoy�s results. The reasons for this
can be explained by the following reasoning. In the present analysis, the in-plane stress solution contains

both ry normal stress and sxy shear stresses which were neglected previously. Moreover, the rx stress dis-
tribution shows the stress diffusion from the loaded edge towards the middle of the plate. As a result, the

maximum stress is reduced (see Fig. 3) and stresses near the edges 2y=b ¼ �1 are increased. As the plate
1

ng coefficient for various aspect ratiosa

Dimensionless buckling coefficient K

Present solution (four term

Galerkin) (sinusoidal)

Benoy (parabolic) van der Neut (sinusoidal)

7.841 7.08 –

5.146 4.59 4.68

5.748 4.53 –

re a ¼ a=b, and K ¼ r0hb2=p2D.
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Fig. 7. Nondimensional buckling load (r0hb2=p2D) for various plate aspect ratio (a).
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edges are supported, this stress increase near the edges would cause the plate to sustain higher buckling

loads. As the stress diffusion is higher at higher plate aspect ratios (Figs. 4 and 5) the buckling loads are

progressively higher at higher plate aspect ratios. This is clearly evident from Table 1 (and also from Fig. 7)

that the percentage difference between the present solution and Benoy solution increased from about 10% at
a ¼ 0:5 to more than 26% at a ¼ 3. It is interesting to note from Fig. 7, that up to the plate aspect ratio of 3

only the first two buckling modes are active as against three buckling modes in Benoy�s results.

5. Concluding remarks

An analytical solution for buckling of simply supported rectangular plates subjected to sinusoidal in-

plane compressive stress distribution at each end is presented as a superposed Fourier solution. The re-
sulting in-plane stress solution consists of two normal stresses (x, y directions) and a shear stress which are

nonlinearly distributed throughout the plane of the plate. The in-plane stress distribution in the present

solution shows a decrease (diffusion) in axial stress (rx) as the distance from the loaded edges is increased.

At high plate aspect ratios, this stress diffusion is more rapid and it remains essentially uniform at a reduced

value for most part of the plate. This stress diffusion is in accord with Saint–Venant�s principle and is

believed to be a more accurate description of the sinusoidal edge loading. It is observed that similar to the

normal stress diffusion, the maximum shear stress location moved towards plate edges at higher plate aspect

ratios causing the shear stress to be more effective towards resisting buckling. As a consequence, present
analysis shows increased buckling loads at higher plate aspect ratios than those obtained in the literature. It

is also observed that up to the plate aspect ratio of 3.0, only the first two buckling modes are active. The

dimensionless buckling load for various plate aspect ratios shows a qualitative agreement with the existing

plate buckling literature.
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Appendix A. Complete in-plane solution

The first terms of the stress distributions are
rx1 ¼ � p2

b2
C1 cosh

px
b

� ��
þ C4 x sinh

px
b

� ��
cos

py
b

ðA:1Þ

ry1 ¼ C1

p2

b2

��
þ C4

2p
b

�
cosh

px
b
þ C4

p2

b2
x sinh

px
b

�
cos

py
b

ðA:2Þ

sxy1 ¼
p
b

C1

p
b

��
þ C4

�
sinh

px
b
þ C4

p
b
x cosh

px
b

�
sin

py
b

ðA:3Þ
where
C1 ¼
pa
2b

cosh
pa
2b

� �
þ sinh

pa
2b

� �
pa
2b

þ sinh
pa
2b

� �
cosh

pa
2b

� � r0b2h
p2

ðA:4Þ

C4 ¼ �
pa
2b

sinh
pa
2b

� �
pa
2b

þ sinh
pa
2b

� �
cosh

pa
2b

� � r0b2h
p2

ðA:5Þ
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The second terms of the stress distributions are
rx2 ¼
X

m¼1;2;...

4m2p2

a2
D1m

��
þ a
4mp

D4m

�
cosh

2mpy
a

� �
þ D4my sinh

2mpy
a

� ��
cos

2mpx
a

� �
ðA:6Þ
ry2 ¼ �
X

m¼1;2;...

4m2p2

a2
cos

2mpx
a

� �
D1m cosh

2mpy
a

� ��
þ D4my sinh

2mpy
a

� ��
ðA:7Þ
sxy2 ¼
X

m¼1;2;...

4m2p2

a2
sin

2mpx
a

� �
D1m

��
þ D4m

a
2mp

�
sinh

2mpy
a

� �
þ D4my cosh

2mpy
a

� ��
ðA:8Þ
where
D1m cosh
mpb
a

þ D4m sinh
mpb
a

¼ 0 ðA:9Þ
let
s1 ¼
p
b

C1

p
b

��
þ C4

�
sinh

px
b
þ C4

p
b
x cosh

px
b

�
ðA:10Þ
and
F1n ¼
Z 1

�1

s1 sin
2npx
a

dx ðn ¼ 1; 2; 3; . . .Þ ðA:11Þ
D1m ¼ �F1ma2

4m2p2 1� 1

2mp tanhððmpbÞ=aÞ

� �
sinh

mpb
a

� 1

tanhððmpbÞ=aÞ
b
2
cosh

mpb
a

ðA:12Þ
D4m ¼ � D1m

tanh
mpb
a

ðA:13Þ
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