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Abstract

The problem of buckling of a rectangular plate subjected to uniformly distributed in-plane compressive loading at
each end goes back to the work of Bryan in 1890-91. The same problem, for the case of linearly varying in-plane
compressive loading at each end, was first treated by several European investigators about 90 years ago. The case of
loading that is nonlinearly distributed along two opposite plate edges is considerably more complicated in that it re-
quires that first the plane elasticity problem be solved to obtain the distribution of in-plane stresses. Then the buckling
problem must be solved. This problem was claimed to have been solved by van der Neut in 1958 for a half-sine load
distribution and later by Benoy for a parabolic distribution. However, their work was based on an incorrect in-plane
stress distribution. Here is presented a solution for the half-sine load distribution on two opposite sides, based on a
more realistic in-plane stress distribution. This distribution shows a decrease (diffusion) in axial stress as the distance
from the loaded edges is increased. The buckling loads are calculated using Galerkin method and the results are
compared with the inaccurate results in the literature.
© 2003 Elsevier Science Ltd. All rights reserved.
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1. Introduction

The problem of buckling of a rectangular elastic plate subjected to in-plane compressive or shear loading
is important in the shipbuilding, aircraft, and automotive industries. The first work in this area was due to
Bryan (1890-91) (see Timoshenko and Gere, 1961, p. 351). Bryan considered the case of uniformly dis-
tributed compressive loading and all four edges simply supported. The cases of more complicated boundary
conditions have been solved by innumerable investigators through the years.

The case of linearly varying edge loading was first considered independently in 1910 by Timoshenko and
in 1914 by Boobnov, using approximate methods (see Timoshenko and Gere, 1961, p. 373). This load-
ing case was also analyzed, using approximate methods, by Way (1936), Favre (1948), Grossman (1949),
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Noel (1952), McKenzie (1964), and Dawe (1969). Recently, Leissa and Kang (2001) and Kang and Leissa
(2001) solved this same problem exactly in a series sense.

There have been very few previous solutions for the case of nonlinearly distributed edge loadings.
Perhaps this scarcity is due to the additional complexity of having to first solve for the internal prestress
distribution as a problem in plane-stress elasticity. The first work in this area was due to van der Neut
(1958), who considered a uniaxial compressive loading with a half sine distribution. The work of Benoy
(1969) should also be mentioned. He considered a uniaxial compressive loading with a parabolic distri-
bution and obtained an energy solution.

It should be pointed out that the works of van der Neut (1958) and Benoy (1969) both suffered from
these serious deficiencies:

e The x-direction in-plane normal stress distribution was tacitly assumed to depend only on the y-position
coordinate. (In actuality there is a stress-diffusion phenomenon which causes this stress distribution to
vary with x as well as y.)

e The contributions of the y-direction in-plane normal stress distribution and the in-plane shear stress dis-
tribution have been ignored.

o [t was assumed that the buckled waveform and thus the bending strain energy for the nonuniform-load-
ing case is identical to that for uniform loading.

The goal of the present work is to remove these deficiencies and thus to achieve more accurate results for
the buckling load.

2. Preliminary considerations

The problem geometry and coordinate system are shown in Fig. 1. The first approach investigated here
was to use the polynomial form of the Airy stress function, systematized by Niedenfuhr (1957) and Neou
(1957). The resulting distributions of in-plane stresses satisfied compatibility, vanishing shear stresses on all
four edges, and the parabolically distributed loading on the edges at x = +a/2. Unfortunately, it was not
possible to satisfy the conditions of vanishing normal stresses on the edges y = +b/2. However, it was
possible to have the resultant force

a/2
F, = / ha,dx

a2
vanish at y = +b/2. Here £ is the plate thickness. Nevertheless, the maximum value of ¢, at y = £b/2 was
(=2/3)(a/b)* 6y, where oy is the maximum value of the parabolically distributed o, at x = +a/2. It is clear
that the maximum value of ¢, is not negligible relative to the maximum value of g, except for very short
(low aspect ratio) plates.
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Fig. 1. Geometry and loading of the plate.
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In view of the inaccuracy of the Niedenfuhr—Neou prebuckling results, it was decided to use a direct
Fourier series approach using the superposition method (see Timoshenko and Goodier, 1970; Gorman and
Singhal, 1993).
3. In-plane stress solution

3.1. Theory

As shown in Fig. 1 a rectangular plate with the coordinate system placed at the center of the plate is
loaded with the in-plane loading as

o, = agcos(my/b) (1)
applied at the edges x = +a/2. Substituting the Airy stress function ¢, given by
¢, = f(x)cos(my/b) 2)

into the governing differential equation V*¢ = 0, one can obtain the general solution for the functional f'(x)
as

flx)=0C cosh(%) + G sinh(%) + ngcosh(%) + Cyx sinh(%) (3)

in which C; through Cy4 are constants which are to be obtained from the boundary conditions. It is to be
noted that the stress function solution as given by Eqs. (2) and (3) gives a zero normal stress at y = +b/2
edges.

Substituting the zero shear stress boundary condition as well as the normal stress distribution as defined
in Eq. (1), at the edges x = +a/2, yields a complete solution for the in-plane stresses. (See Appendix A for
the complete solution.)

o, = (Cl cosh(%) + Cyx sinh(%)) cos(%) (4)

However, the above in-plane stress solution gives a residual shear stress distribution at the y = +5/2 edges
which can be eliminated using a superposed Fourier solution as discussed by Timoshenko and Goodier
(1970) and by Gorman and Singhal (1993). In the present problem, a solution consisting of two superposed
stress functions is sufficient to satisfy the required boundary conditions accurately.
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Fig. 2. Dimensionless shear stress (t,,/0y) distribution at (2y/b = £1) edges (aspect ratio a/b = 1) (solution-1 corresponds the stress
function solution ¢, and superposed solution is the total (¢, + ¢,) solution).
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The stress function solution in Eq. (4) produces a shear stress distribution in the x-direction which can be
easily expanded as a Fourier sine series. In order to eliminate these shear stresses, one can start with a
second stress function solution, which produces sinusoidal shear stress distribution in the x-direction. After
eliminating the unsymmetric components, this stress function is given by

2 2 2
¢, = Z D;,, cosh mry + D,y sinh V) ) cos (5)
a a a

m=12,...

Imposing the zero normal stress boundary condition at the y = +£5/2 edges, an interrelation between Dy,
and Dy, can be obtained. Now superposition of the shear stress distribution at the y = £b/2 edges and
equating the resultant to zero yields a complete solution.

It is to be observed that whereas the initial stress-function solution (¢,) is a one-term solution, the
second stress-function solution (¢,) is a series solution. However, at the most the first three or four series
terms are sufficient to obtain a close approximation for the residual shear stress distribution due to ¢,.

Although the stress-function solution ¢, has zero normal stresses at the y = £5/2 edges and zero shear
stresses at x = +a/2 edges, it does produce a residual normal stress (o,). However, it is observed that this o,
stress distribution is once again sinusoidal with a very small magnitude. Consequently, a renormalization of
the superposed o, distribution has to be carried out such that the resulting o, stresses are very nearly as
specified by Eq. (1). This renormalization is carried out using a small uniform stress and a multiplication
factor. This methodology gives good results as shown in the next section.

In using the two-stress-function solution, however, one can observe that it deviates from the super-
position method as developed by Timoshenko and used extensively by Gorman. For the present problem,
the superposition method requires a four stress function solution wherein each stress function has to have
enough terms to obtain satisfactory convergence. From a preliminary analysis, it is concluded that the
superposition method showed a slow convergence for o, residual stress removal (at the y = £b/2 edges).
Moreover the resulting in-plane stress distribution is considerably complicated and the in-plane stress
boundary conditions are approximately satisfied. Therefore in the present analysis, the two-stress-function
approach is carried out.

3.2. Numerical results for in-plane stress distribution

Fig. 2 shows the comparative shear stresses at y = £b/2 plate edges for the case of ¢, stress function
solution only and the superposed (¢, + ¢,) stress function solution. From this figure, one can clearly see
that the superposed solution satisfied the zero shear stress boundary condition (on all four edges) very
accurately.

The direct Fourier solution (two-stress-function solution) in the present analysis shows a rapid reduction
(or diffusion) of a,—in-plane stresses towards the center of the plate. This decrease is more pronounced at
higher plate aspect ratios (Figs. 3 and 4). Such diffusion of in-plane stresses was ignored in the work of van
der Neut (1958) and Benoy (1969). In the absence of such diffusion, the applicability of those solutions is
very much restricted to small plate aspect ratios. (More will be discussed in Section 4.2 when the buckling
solution is presented.)

Fig. 3 shows the normal (o,) stress distribution across the plate width at various plate sections and in
Fig. 4 the in-plane normal stress at 2y/b = 0, and shear stress at 2y/b = 0.5, are plotted along the plate half
length. These figures show the normal stress diffusion from the edges of the plate towards the center of the
plate. At higher aspect ratios, the nonlinearity of the in-plane stress (o, ) is significant only at a distance up
to the first quarter from the plate edge approximately and thereafter the in-plane stress essentially remains
uniform (see 2x/a = 0 and 2x/a = 0.5 curves in Fig. 3). Also Fig. 4 shows that the maximum shear stress
moves toward the plate edge as the aspect ratio is increased. Consequently the effect of in-plane shear stress
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Fig. 3. Normal stress (—a,/0o) distribution at stations 2x/a = 0, 0.5, 0.75, 1.0 (aspect ratio a/b = 3).

0.2
01{ e
0 - - . —

a shear stress
9 0.2 0.4 0.6 0.8
£ 019 (@r.=3)
2]
o 027 — — —-normal stress
8 031 (ar.=3)
c
o 044 e shear stress
% -0.5 - (a.r.=1)
£ .06 —-—--normal stress
o - _ =

07 fommmm e (a.r.=1)

084 T/

0.9

2x/a

Fig. 4. Dimensionless normal stress (g,/0y) at 2y/b = 0 and shear stress (t,,/0y) at 2y/b = 0.5, across plate half length (a.r. =aspect
ratio).

on buckling at high plate aspect ratios reduces. One can notice from Fig. 4 that for lower plate aspect ratios,
the stress diffusion rate is small compared to those plates of high aspect ratios.

In order to see the normal stress diffusion more clearly, a three dimensional plot of the dimensionless
normal stress (compressive) is shown in Fig. 5 for a plate aspect ratio of 3. In this plot, the z-coordinate is
the normal stress magnitude corresponding to the (x,y) location of the plate. From this figure one can see
the rapid normal stress diffusion from 2x/a = +1 edges towards the center of the plate.

Fig. 6 shows the resultant shear stress variation across plate width at various plate sections. The maxi-
mum magnitude of shear stress increases from the middle of the plate towards the plate edges and then
reduces to zero at the plate edges (see Fig. 4 also). From the equilibrium perspective, this rapid increase in
shear stress corresponds to the normal stress diffusion.

The in-plane stress solution in the present analysis show that:

e In general all the in-plane stresses are functions of both x and y.

e The in-plane normal stress in the x-direction changes from a half sinusoidal distribution at the plate
edges to uniform (approximately) towards the plate center. This stress diffusion is more prominent at
high plate aspect ratios.
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Fig. 5. Dimensionless normal stress (o, /g() versus position in the midplane of the plate (aspect ratio = 3).
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Fig. 6. Shear stress (t,,/0¢) distribution across plate width (aspect ratio = 3).

e The normal stress in the y-direction and the shear stress distributions are significant and are highly non-
linear.

4. Buckling solution
4.1. Theory

The governing differential equation for thin plate buckling is

h o*w *w o*w
4 P — —_— — =
v W+D(JX ox2 +2Txy6xay+ay 6y2) 0

where D is the flexural rigidity, 4 is the plate thickness, and w is the normal deflection.
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Owing to the complexity of the resulting plate buckling equation when each of the in-plane stress is a
series sum, exact analytical solution may not be possible. Therefore, the buckling solution is obtained by
using the Galerkin method for the case of simply supported rectangular plates. For the present case of
simply supported rectangular plates with central coordinate system the trial functions are

w(x,y) = wy cos(mnx/a) cos(nmy/b), {m,n=1,35...}

Numerical calculations were conducted using symbolic math package Mathematica (version 4.0).
4.2. Numerical results for buckling

Numerical computations are done using the first four trial functions. Numerical results are compared for
convergence between three-term Galerkin solution and four-term solution. Up to three significant digit
accuracy was obtained for all buckling loads with the four-term solution. Some representative results for
dimensionless buckling loads are presented in Table 1 and the dimensionless buckling coefficient for various
plate aspect ratios is plotted in Fig. 7. Although the results obtained by Benoy (1969) are for the case of
parabolic loading, one can compare the solutions due to the close similarity of sinusoidal and parabolic
stress distributions.

The buckling loads in the present analysis are higher than those of Benoy’s results. The reasons for this
can be explained by the following reasoning. In the present analysis, the in-plane stress solution contains
both ¢, normal stress and t,, shear stresses which were neglected previously. Moreover, the o, stress dis-
tribution shows the stress diffusion from the loaded edge towards the middle of the plate. As a result, the
maximum stress is reduced (see Fig. 3) and stresses near the edges 2y/b = +1 are increased. As the plate

Table 1
Buckling coefficient for various aspect ratios®
o Dimensionless buckling coefficient K
Present solution (four term Benoy (parabolic) van der Neut (sinusoidal)
Galerkin) (sinusoidal)
0.5 7.841 7.08 -
1 5.146 4.59 4.68
3 5.748 4.53 -

*Here o = a/b, and K = aohb*/7*D.
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Fig. 7. Nondimensional buckling load (co4b*/n>D) for various plate aspect ratio (o).
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edges are supported, this stress increase near the edges would cause the plate to sustain higher buckling
loads. As the stress diffusion is higher at higher plate aspect ratios (Figs. 4 and 5) the buckling loads are
progressively higher at higher plate aspect ratios. This is clearly evident from Table 1 (and also from Fig. 7)
that the percentage difference between the present solution and Benoy solution increased from about 10% at
o = 0.5 to more than 26% at « = 3. It is interesting to note from Fig. 7, that up to the plate aspect ratio of 3
only the first two buckling modes are active as against three buckling modes in Benoy’s results.

5. Concluding remarks

An analytical solution for buckling of simply supported rectangular plates subjected to sinusoidal in-
plane compressive stress distribution at each end is presented as a superposed Fourier solution. The re-
sulting in-plane stress solution consists of two normal stresses (x, y directions) and a shear stress which are
nonlinearly distributed throughout the plane of the plate. The in-plane stress distribution in the present
solution shows a decrease (diffusion) in axial stress (a,) as the distance from the loaded edges is increased.
At high plate aspect ratios, this stress diffusion is more rapid and it remains essentially uniform at a reduced
value for most part of the plate. This stress diffusion is in accord with Saint—Venant’s principle and is
believed to be a more accurate description of the sinusoidal edge loading. It is observed that similar to the
normal stress diffusion, the maximum shear stress location moved towards plate edges at higher plate aspect
ratios causing the shear stress to be more effective towards resisting buckling. As a consequence, present
analysis shows increased buckling loads at higher plate aspect ratios than those obtained in the literature. It
is also observed that up to the plate aspect ratio of 3.0, only the first two buckling modes are active. The
dimensionless buckling load for various plate aspect ratios shows a qualitative agreement with the existing
plate buckling literature.
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Appendix A. Complete in-plane solution

The first terms of the stress distributions are
2

T inh( ™)) cos™
O =13 (C1 cosh( 5 ) + C4xsmh< 5 )) cos (A1)
2 21 X y
0,1 = Cl B + Cy— 5 cosh —|— C4b xsinh— 5 cos? (A-2)
_ y
Tyl = 5 (<C1 5 + C4) sinh =X b + C4bxcosh 5 ) sin b (A.3)
where
na na ) na
c 7%cosh<ﬁ) +s1nh(%> cobh (A4)
- My s1nh( ) cosh(E) ™ '
2b 2b 2
na na
— sinh( — 2
Co=— o 2b (2b) aob"h (A.5)

E + smh( 2b> cosh(%) ™
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The second terms of the stress distributions are

dm>n? a 2mmy ) 2mmy 2mmx
Op = mzzl; p [(Dlm + MD4'") cosh(—a > + D4,,,ysmh<—a )} cos( p; ) (A.6)
dm’m? 2mnx 2mmy . (2mmy
Oy = — m;m = cos< p ) [D]m cosh(T> + Dy smh( p )] (A7)
dm’n* . ([ 2mnx a . 2mmy 2mmy

Tyo = m:lZJW g sm( ; ) {(Dlm +D4,,,%) mnh(T) + D4,,,ycosh< p, )] (A.8)

where
b ) b
Dy, coshﬂ + Dy, smhﬂ =0 (A.9)
a a
let
T i . X i X

71 :Z((Clg—i—ﬁ) smh?—i— C4Zxcosh7) (A.10)

and
! . 2nmx
Fl,,:/ ) 8in dx (n=1,2,3,...) (A.11)
—1 a
_F‘lma2
D= dm2r( 1 — ! sinhm—nb — S coshm—nb i
2mm tanh((mnb)/a) a  tanh((mnb)/a) 2 a
Dlm
Dy, = — b (A.13)
tanh —
a
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